Welcome to the website of The institute of Applied Physics!
 
The Institute of Applied Physics was founded in the late 1960's, as part of the School for Applied Sciences. While the School of Applied Sciences has since been dismantled, the Institute of Applied Physics continues to thrive, now under the university’s Faculty of Science. We are a cohort of passionate scientists and engineers, leading research and teaching efforts that try to better understand phenomena behind the natural world and how it can be utilized to improve our technology and ultimately, our lives.

In The News

New study uncover nuclear spin's impact on biological processes

New study uncover nuclear spin's impact on biological processes

31 July, 2023

New study uncover nuclear spin's impact on biological processes

A research team led by Prof. Yossi Paltiel at the Hebrew University of Jerusalem with groups from HUJI, Weizmann and IST Austria has published a new study that reveals the influence of nuclear spin on 1/4 biological processes. This discovery challenges long-held assumptions and opens up exciting possibilities for advancements in biotechnology and quantum biology.

האוניברסיטה העברית ואינטל מרחיבות את שיתוף הפעולה

האוניברסיטה העברית ואינטל מרחיבות את שיתוף הפעולה

8 July, 2021

חדשות האקדמיה: היוזמה של הסטודנטים לרפואה

מיזם חדש של סטודנטים ישראליים הלומדים רפואה בארץ ובחו"ל מעודד את המחקר בקרב הדור הבא של הרופאים כבר במהלך הלימודים, בעברית מהדקים את הקשר עם אינטל ובמכללה האקדמית אחוה
הוקם מרכז סימולציה חדש. חדשות האקדמיה - מדור שבועי

האוניברסיטה העברית ואינטל מרחיבות את שיתוף הפעולה

How Glowing Bacteria in the Dirt May One Day Save Lives

How Glowing Bacteria in the Dirt May One Day Save Lives

21 June, 2021

Researchers in Israel have recently detailed progress in developing sensors that light up in the presence of a chemical linked to land mines and other deadly explosives.

By Elizabeth Landau

June 21, 2021

Land mines left over from bygone conflicts — or those still being fought — pose silent threats to millions of people around the world. With the help of bacteria that glow in their presence, these hidden hazards may one day be found and safely removed or destroyed.

 

 

Coherent nanophotonic electron accelerator

18 October, 2023
Coherent nanophotonic electron accelerator

Abstract

Particle accelerators are essential tools in a variety of areas of industry, science and medicine1,2,3,4. Typically, the footprint of these machines starts at a few square metres for medical applications and reaches the size of large research centres. Acceleration of electrons with the help of laser light inside of a photonic nanostructure represents a microscopic alternative with potentially orders-of-magnitude decrease in cost and size5,6,7,8,9,10,11,12,13,14,15,16. Despite large efforts in research on dielectric laser acceleration17,18, including complex electron phase space control with optical forces19,20,21, noteworthy energy gains have not been shown so far. Here we demonstrate a scalable nanophotonic electron accelerator that coherently combines particle acceleration and transverse beam confinement, and accelerates and guides electrons over a considerable distance of 500 μm in a just 225-nm-wide channel. We observe a maximum coherent energy gain of 12.3 keV, equalling a substantial 43% energy increase of the initial 28.4 keV to 40.7 keV. We expect this work to lead directly to the advent of nanophotonic accelerators offering high acceleration gradients up to the GeV m1 range utilizing high-damage-threshold dielectric materials22 at minimal size requirements14. These on-chip particle accelerators will enable transformative applications in medicine, industry, materials research and science14,23,24.

New study uncover nuclear spin's impact on biological processes

31 July, 2023
New study uncover nuclear spin's impact on biological processes

New study uncover nuclear spin's impact on biological processes

A research team led by Prof. Yossi Paltiel at the Hebrew University of Jerusalem with groups from HUJI, Weizmann and IST Austria has published a new study that reveals the influence of nuclear spin on 1/4 biological processes. This discovery challenges long-held assumptions and opens up exciting possibilities for advancements in biotechnology and quantum biology.

Scientists have long believed that nuclear spin had no impact on biological processes. However, recent research has shown that certain isotopes behave differently due to their nuclear spin. The team focused on stable oxygen isotopes (16O, 17O, 18O) and found that nuclear spin significantly affects oxygen dynamics in chiral environments, particularly in its transport.

The findings, published in the Proceedings of the National Academy of Sciences (PNAS), have potential implications for controlled isotope separation and could revolutionize nuclear magnetic resonance (NMR) technology.

Prof. Paltiel, the lead researcher, expressed excitement about the significance of these findings. He stated, "Our research demonstrates that nuclear spin plays a crucial role in biological processes, suggesting that its manipulation could lead to groundbreaking applications in biotechnology and quantum biology. This could potentially revolutionize isotopic fractionation processes and unlock new possibilities in fields such as NMR."

The story in detail

Researchers have been studying the "strange" behavior of tiny particles in living things, finding some places where quantum effects change biological processes. For example, studying bird navigation quantum effects may help some birds find their way in long journeys. In plants, efficiently using sunlight for energy is affected by quantum effects.

This connection between the tiny world of particles and living beings 2/4 likely goes back billions of years to when life began and molecules with a special shape called chirality appeared. Chirality is important because only molecules with the right shape can do the jobs they need to in living things.

The link between chirality and quantum mechanics was found in "spin," which is like a tiny magnetic property. Chiral molecules can interact differently with particles based on their spin, creating something called Chiral Induced Spin Selectivity (CISS).

Scientists have found that spin affects tiny particles, like electrons, in living processes involving chiral molecules. They wanted to see if spin also affects larger particles, like ions and molecules that supply the base for biological transport. So, they did experiments with water particles that have different spins. The results showed that spin influences how water behaves in cells, entering at different speeds and reacting in a unique way when chiral molecules are involved.

This study highlights the importance of spin in the processes of life. Understanding and controlling spin could have a big impact on how living things work. It might also help improve medical imaging and create new ways to treat illnesses.

The research was a collaborative effort among scientists from various institutions, including the Institute of Earth Sciences and Life Sciences in Hebrew and the Weizmann Institute, with the study led by the Department of Applied Physics at Hebrew University.

More information: Vardi, Ofek et al, Nuclear spin effects in biological processes, Proceedings of the National Academy of Sciences (2023). DOI: 10.1073/pnas.2300828120 3/4

Provided by Hebrew University of Jerusalem

Citation: New study uncover nuclear spin's impact on biological processes (2023, July 31) retrieved 2 August 2023 from https://phys.org/news/2023-07-uncover-nuclear-impact-biological.html

Traditionally Ignored Phenomenon Reveals Potential for Breakthroughs in Biotechnology: Nuclear Spin's Impact on Biological Processes Uncovered | en.new.huji

האוניברסיטה העברית ואינטל מרחיבות את שיתוף הפעולה

8 July, 2021
האוניברסיטה העברית ואינטל מרחיבות את שיתוף הפעולה

חדשות האקדמיה: היוזמה של הסטודנטים לרפואה

מיזם חדש של סטודנטים ישראליים הלומדים רפואה בארץ ובחו"ל מעודד את המחקר בקרב הדור הבא של הרופאים כבר במהלך הלימודים, בעברית מהדקים את הקשר עם אינטל ובמכללה האקדמית אחוה
הוקם מרכז סימולציה חדש. חדשות האקדמיה - מדור שבועי

האוניברסיטה העברית ואינטל מרחיבות את שיתוף הפעולה

ומרפואה לטכנולוגיה. מגפת הקורונה אילצה את האוניברסיטאות 'לחשב מסלול מחדש' לגבי שיטות ההוראה והתאמתן למציאות שבה סטודנטים אינם נוכחים בקמפוס לתקופות ארוכות ומסוגרים בביתם. הוראה מרחוק באמצעות 'זום' אפשרה את המשך השיעורים העיוניים, אך קיום מעבדות ההוראה בלימודי ההנדסה ומדעי הטבע היווה מכשול גדול יותר ואילץ פתרונות יצירתיים להעברת הקורסים הניסויים.

במסגרת לימודי הנדסת חשמל באוניברסיטה העברית נדרשים תלמידי שנה ג' לקחת שתי מעבדות אלקטרוניקה, אנלוגית וספרתית (דיגיטלית), המהווים הכשרה בסיסית לכל מהנדס אלקטרוניקה. הפתרון שהגו באוניברסיטה העברית לכל אחת מהמעבדות התבסס על הצטיידות בערכות אלקטרוניקה ייעודיות שהושאלו לסטודנטים לעבודה עצמאית מהבית למשך הסמסטר. ההתנסות הראשונית במעבדה לאלקטרוניקה אנלוגית הוכתרה בהצלחה רבה, ואפשרה לסטודנטים לערוך את הניסויים בביתם עם ליווי מקוון מצוות הדרכת הקורס.

חדשות האקדמיה: היוזמה של הסטודנטים לרפואה (ynet.co.il)

 

How Glowing Bacteria in the Dirt May One Day Save Lives

21 June, 2021
How Glowing Bacteria in the Dirt May One Day Save Lives

Researchers in Israel have recently detailed progress in developing sensors that light up in the presence of a chemical linked to land mines and other deadly explosives.

By Elizabeth Landau

June 21, 2021

Land mines left over from bygone conflicts — or those still being fought — pose silent threats to millions of people around the world. With the help of bacteria that glow in their presence, these hidden hazards may one day be found and safely removed or destroyed.

 

 

https://www.nytimes.com/2021/06/21/science/landmines-glowing-bacteria.html

Read more